首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Co-Intercalation of Dual Charge Carriers in Metal-Ion-Confining Layered Vanadium Oxide Nanobelts for Aqueous Zinc-Ion Batteries
Authors:Tingting Lv  Dr Guoyin Zhu  Dr Shengyang Dong  Prof Qingquan Kong  Yi Peng  Shu Jiang  Guangxun Zhang  Zilin Yang  Prof Shengyang Yang  Prof Xiaochen Dong  Prof Huan Pang  Prof Yizhou Zhang
Institution:1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China;2. Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044 P. R. China;3. Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106 P. R. China;4. School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116 China
Abstract:Vanadium-based oxides with high theoretical specific capacities and open crystal structures are promising cathodes for aqueous zinc-ion batteries (AZIBs). In this work, the confined synthesis can insert metal ions into the interlayer spacing of layered vanadium oxide nanobelts without changing the original morphology. Furthermore, we obtain a series of nanomaterials based on metal-confined nanobelts, and describe the effect of interlayer spacing on the electrochemical performance. The electrochemical properties of the obtained Al2.65V6O13 ? 2.07H2O as cathodes for AZIBs are remarkably improved with a high initial capacity of 571.7 mAh ? g?1 at 1.0 A g?1. Even at a high current density of 5.0 A g?1, the initial capacity can still reach 205.7 mAh g?1, with a high capacity retention of 89.2 % after 2000 cycles. This study demonstrates that nanobelts confined with metal ions can significantly improve energy storage applications, revealing new avenues for enhancing the electrochemical performance of AZIBs.
Keywords:Aqueous Zinc-Ion  Batteries  Confined  Mechanism  Nanobelts  Vanadium Oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号