首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of Nitric Oxide-Derived Nitrite and Nitrate in Biological Samples by HPLC Coupled to Nitrite Oxidation
Authors:Wu  Anguo  Duan  Tingting  Tang  Dan  Xu  Youhua  Feng  Liang  Zheng  Zhaoguang  Zhu  Jiaxiao  Wang  Rushang  Zhu  Quan
Institution:1.State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
;2.Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, 71 Dongpeng Road, Guangzhou, 510530, People’s Republic of China
;3.Key Laboratory of Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
;
Abstract:

Nitrite and nitrate are main stable products of nitric oxide, a pivotal cellular signaling molecule, in biological fluids. Therefore, accurate measurement of the two ions is profoundly important. Nitrite is difficult to be determined for a larger number of interferences and unstable in the presence of oxygen. In this paper, a simple, cost-effective and accurate HPLC method for the determination of nitrite and nitrate was developed. On the basis of the reaction that nitrite is oxidized rapidly to nitrate with the addition of acidic potassium permanganate, the determination of nitrite and nitrate was achieved by the following strategy: each sample was injected twice for HPLC analysis, i.e. the first injection was to measure nitrate, and the second injection was to measure total nitrate including initial nitrate and the nitrate from the conversion of nitrite with the addition of acid potassium permanganate in the sample. The amount of nitrite can be calculated as difference between injections 2 and 1. The HPLC separation was performed on a reversed phase C18 column for 15 min. The mobile phase consisted of methanol–water (2:98 by volume); the water in the mobile phase contained 0.60 mM phosphate salt (potassium dihydrogen and disodium hydrogen phosphate) and 2.5 mM tetrabutylammonium perchlorate (TBAP). The UV wavelength was set at 210 nm. Additionally, we systemically investigated the effects of the concentration of phosphate salt and TBAP in the mobile phase, the pH of the mobile phase, and the amount of acidic potassium permanganate added to the sample on the separation efficacy. The results showed that the limits of detection (LOD) and the limit of quantitation (LOQ) were 0.075 and 0.25 μM for nitrate (containing the oxidized nitrite), respectively. The linear range was 1–800 μM. This developed approach was successfully applied to assay nitrite/nitrate levels in cell culture medium, cell lysate, rat plasma and urine.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号