首页 | 本学科首页   官方微博 | 高级检索  
     检索      

弹体侵彻厚混凝土靶迎弹面成坑效应
引用本文:李明,王可慧,邹慧辉,段建,古仁红,戴湘晖,杨慧.弹体侵彻厚混凝土靶迎弹面成坑效应[J].爆炸与冲击,2022,42(8).
作者姓名:李明  王可慧  邹慧辉  段建  古仁红  戴湘晖  杨慧
作者单位:西北核技术研究所,陕西 西安 710024
摘    要:为研究弹体侵彻厚混凝土靶的迎弹面成坑效应,总结了侵彻实验中的成坑现象,分析了经验公式对成坑深度、成坑直径和成坑角等成坑效应的预测效果;考虑了撞击速度、靶板强度、配筋以及弹体直径和质量等因素的影响,采用量纲分析方法建立了新型成坑效应计算公式及成坑阶段耗能计算公式;基于新型成坑效应计算公式,对成坑效应的影响因素和成坑耗能进行了参数化分析。结果表明:无量纲成坑深度受靶板强度、配筋率和弹体质量的影响较大;对于钢筋混凝土,成坑深度随撞击速度提升呈先增大后减小再增大的变化规律;在常见的侵彻速度和质量范围内,成坑角为15°~24°,质量对成坑角影响较小;迎弹面成坑耗能占弹体总动能的10%~25%,且配筋率和靶板强度对成坑耗能比例的影响较小;弹体质量越小,成坑阶段耗能占比越大。新型成坑效应计算公式对成坑深度、直径和角度的计算结果与实验数据吻合较好,可为侵彻弹体设计和工程防护提供参考。

关 键 词:侵彻    混凝土靶    成坑效应    量纲分析    经验公式
收稿时间:2021-07-08

Crater morphology of a projectile penetrating a thick concrete target
Institution:Northwest Institute of Nuclear Technology, Xi’an 710024, Shaanxi, China
Abstract:To study the crater effect of the projectile penetrating a thick concrete target, the crater phenomenon in the penetration test was summarized, the predictive effect of the empirical formula on the crater depth, crater diameter, and crater angle was analyzed. Using the dimensional analysis method, new calculation formulas for the crater formation effect and energy consumption at the crater formation stage were established. The formulas for the crater formation effect take into account the influence of factors such as impact velocity, target strength, reinforcement ratio, projectile diameter, and projectile mass. Based on the new calculation formulas, parameterized analysis of the influencing factors of pit formation effect and the energy consumption of pit formation was performed. The results show that the dimensionless crater depth is greatly affected by the strength of the concrete target, the reinforcement ratio, and the projectile mass. For reinforced concrete, with the increase of the impact velocity, the crater depth increases first, then decreases, and then increases. Within the common range of penetration velocity and mass, the crater angle is in the range from 15° to 24°, and the mass has little effect on the crater angle. The energy consumption of the crater formation on the front surface accounts for 10% to 25% of the total kinetic energy of the projectile, and the reinforcement ratio and the strength of the target plate have a weak effect on the proportion of the energy consumption of the crater. The proportion of the energy consumed in the crater stage increases as the mass of the projectile decreases. The calculation results by the new crater effect calculation formulas for the crater depth, crater diameter, and crater angle are in good agreement with the experimental data, which can provide a reference for the design of penetrating projectiles and engineering protection.
Keywords:
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号