首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predictive Abilities of Scaled Quantum Mechanical Molecular Force Fields: Application to 1,3-Butadiene
Authors:Yurii N Panchenko  Jean Vander Auwera  Yahia Moussaoui  George R De Maré
Institution:(1) Faculté des Sciences, Laboratoire de Chimie Physique Moléculaire, Université Libre de Bruxelles, CP 160/09, avenue F.-D. Roosevelt 50, B-1050 Brussels, Belgium
Abstract:The positions of some IR bands of the s-trans-1,3-butadiene-h 6 and -1,1,2-d 3 isotopomers in the gas phase have been measured using a Brucker IFS 120 HR spectrometer with a resolution of 2 cm–1. The structural parameters of the s-trans- and s-gauche-1,3-butadiene conformers were optimized completely at the MP2/6-31G* theoretical level and their MP2/6-31G*//MP2/6-31G* quantum mechanical force fields (QMFFs) were calculated. Using only the experimental vibrational frequencies of s-trans-1,3-butadiene-h 6 the QMFF of the s-trans conformer was corrected by Pulay's scaling method (eight scale factors were involved). The scaled QMFF was used to calculate the mean vibrational amplitudes and the Coriolis coupling constants of s-trans-1,3-butadiene-h 6 and the vibrational frequencies of 12 of its deuterated isotopomers. The set of scale factors obtained for correction of the s-trans QMFF was transferred to the QMFF of the s-gauche conformer. Its theoretical vibrational spectrum and those of some deuterated and C13 isotopomers were calculated. The ability of this scaling approach (transferring of scale factors) to predict the vibrational frequencies of rotational conformers and their isotopomers, as well as other molecular characteristics, and to permit detection of perturbations of the experimental bands are discussed.
Keywords:Ab initio force field  scale factors  1  3-butadiene  rotational conformers  isotopomers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号