首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coarsening of mass-selected Au clusters on amorphous carbon at room temperature
Authors:R Popescu  R Schneider  A Böttcher  P Weis
Institution:a Laboratorium für Elektronenmikroskopie and Center for Functional, Nanostructures (CFN), Universität Karlsruhe, Engesserstr. 7, D-76128 Karlsruhe, Germany
b Institut für Physikalische Chemie and CFN, Universität Karlsruhe, D-76128 Karlsruhe, Germany
Abstract:Low-energy cluster beam deposition was used to deposit mass-selected Aun clusters (n = 4, 6, 13 and 20) on amorphous carbon (a-C) substrates. The resulting samples were stored at room temperature under ambient conditions for time periods up to 32 months to analyze the coarsening behaviour of the clusters. Cluster-size distributions were measured in regular time intervals by transmission electron microscopy (TEM). The TEM experiments show a significant increase of the average cluster size with time analogous to classical surface Ostwald ripening (OR). The coarsening of Au clusters can be well described by steady-state diffusion-limited kinetics. The derived surface mass-transport diffusion coefficients at room temperature range between 1.1 and 3.8·10−25 m2 s−1 for our samples. A detailed analysis of View the MathML source values suggests that, the rate of the surface OR for mass-selected Aun clusters increases with the cluster size in the sequence: Au4 ≈ Au6 < Au13 < Au20 for the investigated range of Au clusters. Given that the initial, on-surface cluster-size distributions are nominally monodisperse, classical OR with cluster coarsening based only on the Gibbs-Thomson effect cannot explain the observed coarsening. The activation of the coarsening process is rationalized by initial variations of the cluster sizes due to the deposition process itself and/or the interaction of the clusters with the substrate. Moreover, the presence of initial deposited Au clusters as different isomers with slightly different chemical potential on the substrate, may also initiate the coarsening by surface OR. Furthermore, we find that the coarsening is most pronounced for the paucidispersed sample with Aum (10 ? m ? 20) clusters. A possible explanation of this behaviour is the presence of an initial distribution of different cluster sizes directly after deposition.
Keywords:Transmission electron microscopy  Au clusters  Surface diffusion  Ostwald ripening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号