首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spontaneous emission in micro- and nano-structures
Authors:Jing-feng Liu and Xue-hua Wang
Institution:(1) Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854;(2) Omega Optics, Inc, Austin,Texas 78758, USA;(3) Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089
Abstract:Spontaneous emission of emitters governing the performance of optoelectronic devices is a fundamental phenomenon, and it has strong environment-dependent characteristics. In this article, we mainly review the experimental and theoretical progresses in the control of spontaneous emission by manipulating optical modes with photonic crystals, optical microcavities and metallic nanostructures. The spontaneous emission from emitters in photonic crystals can be modified by the local density of states, and by employing photonic crystals, the devices’ efficiency is enhanced, the angular radiation pattern can be engineered, and highly efficient optoelectronic devices are achieved through decreasing the radiative lifetime. In quantum optical devices, microcavities would alter the lifetime of an excited state through tuning the resonance in the frequency and positioning between the emitters and cavity field, and inducing the emitters to emit spontaneous photons in a desired direction. The emerging enhanced electromagnetic field near metallic nanostructures can help to control and manipulate the spontaneous emission of an emitter. The use of micro- and nano-structures to manipulate spontaneous emission will open unprecedented opportunities for realizing functional photonic devices.
Keywords:
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号