首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A finite wavelet domain method for wave propagation analysis in thick laminated composite and sandwich plates
Institution:Center for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712, United States of America;Department of Civil and Environmental Engineering, Shiraz University of Technology, Iran
Abstract:An efficient numerical method is developed for the simulation of three dimensional transient dynamic response in thick laminated composite and sandwich plate structures involving very high frequencies and wave numbers. The proposed method incorporates Daubechies wavelet scaling functions for the interpolation of the in-plane displacements with a Galerkin formulation. It further explores the orthonormality and compact support of wavelet scaling functions to produce near diagonal consistent mass matrices and banded stiffness matrices. Hence, an uncoupled equivalent discrete spatial dynamic system is formulated, synthesized and rapidly solved in the wavelet domain using an explicit time integration scheme. The in-plane wavelet interpolation is further combined with an efficient high order layerwise laminate plate theory, that implements Hermite cubic splines for the through-the-thickness approximation of displacement fields. Numerical results are presented on the prediction of guided waves in laminated and thick sandwich composite plates and compared with respective solutions obtained by analytical, semi-analytical and time domain spectral element models. The method yielded higher convergence rates and substantial reductions in computational effort compared to respective time domain spectral finite elements.
Keywords:Daubechies wavelets  Wavelet based elements  Composite plates  Layerwise laminate plate theory  Guided waves
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号