Abstract: | The intense evaporation of bodies moving in the atmospheres of planets at high supersonic velocities has been partly simulated both theoretically [1–5] (numerical calculations of strong blowing in the framework of the Navier-Stokes equations were also made at the Scientific-Research Institute of Mechanics at the Moscow State University by É. A. Gershbein and A. F. Kolesnikov [6]) as well as experimentally [7–9]. Below, the results are given of investigations of strong blowing of gas from the flat end of a cylinder into a supersonic flow at Reynolds numbers such that the mixing layer separating the blown and the oncoming gas is fairly thin. In this case, the mixing layer can be regarded as a contact surface, so that the problem of blowing can be solved in the framework of Euler's equations. The results of a numerical solution are compared with the results of experiments on the separation and profile of the shock wave, the thickness of the blowing layer on the axis, and also on the pressure distribution on the end of the cylinder. It was established experimentally, and then confirmed numerically that there is a downwash of the blown gas on the periphery of a porous end. It is shown that for the same blowing parameter K, which is equal to the ratio of the dynamic head of the blown gas to the dynamic head of the oncoming gas, and for a given distribution of K over the surface of the body the contact surface tends to a certain limiting position with increasing Mach number of the oncoming flow, i.e., the profile of the contact surface is stabilized. The influence of the adiabatic exponent on the thickness of the blowing layer is estimated. The present investigations continue earlier experimental studies, the main results of which have been presented in [9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–98, January–February, 1980. |