首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of two- and three-dimensional modeling of invert trap for sewer solid management
Authors:Tsewang Thinglas  Deo Raj Kaushal  
Institution:aCivil Engineering Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
Abstract:In the present study, five different invert trap configurations (rectangular with and without lids on both sides; trapezoidal, trapezoidal with rectangular base and rectangular with trapezoidal base with lids on both sides) were simulated for both two-dimensional (2D) and three-dimensional (3D) flow conditions for three sediment types (sand, styrocell and plastic beads) at six flow rates (0.35, 0.70, 1.05, 1.35, 4.55 and 9.95 L/s) for each trap. Computational fluid dynamics (CFD)-based modeling using FLUENT software with Renormalization Group (RNG) kvar epsilon model along with discrete phase model (DPM) were used in the simulations. A hexagonal/tetrahedral and map-type non-uniform grid was chosen to discretize the entire computational domain and a control volume finite difference method was used to solve the governing equations. The flow rates selected in the present study cover the entire range of flow rate expected for dry weather and monsoon. The simulation is capable of differentiating between 2D and 3D modeling of particle trajectories, the effects of flow rate and trap geometry on flow patterns developed in the trap. The sediment retention ratio for 2D is higher than that for 3D modeling for all flow conditions, particle types and model geometry due to inclusion of lateral effects in 3D modeling. The invert trap having rectangular shape with trapezoidal base is found to be the most efficient configuration in both 2D and 3D modeling.
Keywords:CFD modeling  2D  3D  Invert trap  Sediment trapping  Urban drainage
本文献已被 维普 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号