首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites
Authors:Li Wei  Yue Jinquan  Liu Shouxin
Institution:College of Material Sciences and Engineering, Northeast Forestry University, Harbin 150040, China
Abstract:Rod-shaped nanocrystalline cellulose (NCC) was prepared from microcrystalline cellulose (MCC) using the purely physical method of high-intensity ultrasonication. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction was used for the characterization of the morphology and crystal structure of the material. The thermal properties were investigated using thermogravimetric analysis. The reinforcement capabilities of the obtained NCC were investigated by adding it to poly(vinyl alcohol) (PVA) via the solution casting method. The results revealed that the prepared NCC had a rod-shaped structure, with diameters between 10 and 20 nm and lengths between 50 and 250 nm. X-ray diffraction results indicated that the NCC had the cellulose I crystal structure similar to that of MCC. The crystallinity of the NCC decreased with increasing ultrasonication time. The ultrasonic effect was non-selective, which means it can remove amorphous cellulose and crystalline cellulose. Because of the nanoscale size and large number of free-end chains, the NCC degraded at a slightly lower temperature, which resulted in increased char residue (9.6-16.1%), compared with that of the MCC (6.2%). The storage modulus of the nanocomposite films were significantly improved compared with that of pure PVA films. The modulus of PVA with 8 wt.% NCC was 2.40× larger than that of pure PVA.
Keywords:Nanocrystalline cellulose  Microcrystalline cellulose  Ultrasonication  Poly(vinyl alcohol)  Nanocomposites
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号