首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of polymer backbone branching on liquid crystal mesomorphous in nonequimolar complexes of poly(ethyleneimine) and dendritic amphiphiles
Authors:Zhiyu Cheng  Biye Ren  Chongqing Li  Xinxing Liu  Zhen Tong
Institution:Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
Abstract:Two kinds of ionic self‐assembled complexes of linear or branched poly(ethyleneimine) (lPEI or bPEI) with Percec‐type dendrons (3,4,5)16G1‐COOH] were prepared as lPEI‐(3,4,5)16G1‐x and bPEI‐(3,4,5)16G1‐x , where x is the mole ratio of the carboxyl groups of the dendritic amphiphile to the amino groups at the PEI chain. The crystal and mesomorphous structures and thermal properties of these complexes were investigated with X‐ray diffraction (XRD), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and polarized optical microscope (POM). Both the lPEI and bPEI complexes exhibited the same αH crystal phase and similar lamellar mesomorphous phase, irrespective of the branching of the polymer backbone and the binding degree. The lPEI series complexes lPEI‐(3,4,5)16G1‐x , however, had more ordered lamellar stacking than that of the bPEI‐(3,4,5)16G1‐x complexes, so the thermotropic liquid crystal phase SmA was formed only in the lPEI‐(3,4,5)16G1‐x complexes beyond the melting point of the tail crystal of the dendritic amphiphile. No liquid crystalline phase was found from the bPEI‐(3,4,5)16G1‐x complexes. The results suggest that the branching of polymer backbone plays a key role to the formation of thermotropic liquid crystal in the polymer–dendritic amphiphile complex. The present finding is significant for the design of functional nanostructures based on the ionic complexation of polymers and amphiphiles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011
Keywords:backbone branching  lamellar  liquid‐crystalline polymers  Percec‐type dendritic amphiphile  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号