Conjugated polyelectrolytes and neutral polymers with poly(2,7‐carbazole) backbone: Synthesis,characterization, and photovoltaic application |
| |
Authors: | Xiaofeng Xu Wanzhu Cai Junwu Chen Yong Cao |
| |
Affiliation: | Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Specially Functional Materials of MoE, South China University of Technology, Guangzhou 510640, China |
| |
Abstract: | Poly(2,7‐carbazole) neutral polymers (PC‐N, PC‐NOH, and PC‐P) and polyelectrolytes (PC‐NBr and PC‐SO3Na) with hydrophilic pendant groups of ammonium, phosphonate, and sulfonate were synthesized as interlayers for cathode modifications in bulk‐heterojunction photovoltaic cells (BHJ PVCs). The absorptions of the polymers were determined by the poly(2,7‐carbazole) backbone, showing absorption peaks at ~390 nm for their solutions and films. Because of large intermolecular interactions, excimer emissions with wavelengths higher than 500 nm were found in the photoluminescence spectra of the films of the polymers, which weakened the light emissions of the polymers. PC‐N, PC‐NBr, PC‐NOH, and PC‐P possessed comparable HOMO levels of ?5.23 eV and LUMO levels of ?2.4 eV, but HOMO and LUMO levels of PC‐SO3Na were up‐lying to ?4.91 and ?2.12 eV, respectively. PC‐N, PC‐NBr, PC‐NOH, and PC‐P were selected to construct thin interlayers in BHJ PVCs with PFO‐DBT35:PCBM = 1:4 as the active layer. Compared with traditional Al cathode, bilayer cathodes with the interlayers showed improvements of open‐circuit voltages and short‐circuit currents of the PVCs. PC‐NOH was the best for the photovoltaic performances and over 20% increase of power conversion efficiency (PCE) was achieved. The bilayer cathodes would have great potential to further elevate PCE of BHJ PVCs with other active layer materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 |
| |
Keywords: | conjugated polymers fluorescence optical properties photovoltaic cells polycarbazole polyelectrolytes |
|
|