首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effects of preparation temperature on microstructure and electrochemical performance of calcium carbide-derived carbon
Authors:Hao Wu  Xianyou Wang  Yansong Bai  Lanlan Jiang  Chun Wu  Ben’an Hu  Qiliang Wei  Xue Liu  Na Li
Institution:1. Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, School of Chemistry, Xiangtan University, Hunan, Xiangtan, 411105, China
Abstract:Calcium carbide-derived carbons (CCDCs) produced by chlorination of CaC2 at various temperatures (400–800 °C) possess highly controllable microstructure and porosity, allowing them to serve as excellent electrode materials for the application of supercapacitor. This paper focused on the effect of pore size and specific surface area (SSA) of CCDC on its electrochemical behavior. Microstructure and micropore characteristics of CCDC were characterized by N2 adsorption/desorption isotherms, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that SSA and average pore size increased with the increase of synthesis temperature from 400 °C to 600 °C, and then decreased when temperature reached to 800 °C. Meanwhile, a correlation between specific capacitance and SSA of micropores (less than 2 nm in diameter) has been studied. It has been found that the supercapacitor using the CCDC prepared at 600 °C as electrode material in 6 M KOH showed the maximum specific capacitance and energy density (53.61 F g?1 and 7.08 W h kg?1), outstanding rate capability, lower IR drop and 96 % retention of initial capacity over 5,000 cycles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号