A novel synthesis of (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole), alternating polymer formation, characterization, and capacitance measurements |
| |
Authors: | Murat Ates Nesimi Uludag Tolga Karazehir Fatih Arican |
| |
Affiliation: | 1. Department of Chemistry, Faculty of Arts and Sciences, Namik Kemal University, Degirmenalti Campus, Tekirdag, 59030, Turkey 2. Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul, Maslak, Turkey
|
| |
Abstract: | In this work, (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole) (EDOTVBCz) comonomer was chemically synthesized and characterized by Fourier transform infrared (FTIR), proton nuclear magnetic resonance, and carbon nuclear magnetic resonance spectroscopy. EDOTVBCz was electrocoated on glassy carbon electrode (GCE) in various initial molar concentrations ([EDOTVBCz]0?=?1.0, 1.5, 2.0, and 3.0) in 0.1 M lithium perchlorate (LiClO4)/acetonitrile (CH3CN). P(EDOTVBCz)/GCE was characterized by cyclic voltammetry, FTIR reflectance-attenuated total reflection spectroscopy, scanning electron microscopy–energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). EIS was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, Bode phase, and admittance plots. The highest low-frequency capacitance value was obtained as C LF?=?~2.35 mF cm?2 for [EDOTVBCz]0?=?3.0 mM. Double-layer capacitance of the polymer/electrolyte system was calculated as C dl?=?~2.78 mF cm?2 for [EDOTVBCz]0?=?1.0 and 3.0 mM. The maximum phase angle was obtained as θ?=?~76.7o for [EDOTVBCz]0?=?1.0, 1.5, 2.0, and 3.0 mM at the frequency of 20.6 Hz. AC impedance spectra of P(EDOTVBCz)/LiClO4/CH3CN was obtained by performing electrical equivalent circuit model of R(Q(R(CR))) with linear Kramers–Kronig test. Figure SEM-EDX analysis of P(EDOTVBCz)/CFME EDX point analysis inset: SEM point analysis, [EDOTVBCz]0?=?3 mM. Chronoamperometric method of constant potential at 1.6 V, 300 s in 0.1 M LiClO4/CH3CN |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|