首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and Raman spectroscopic study of Mg/Al,Fe hydrotalcites with variable cationic ratios
Authors:Sara J. Palmer  Ray L. Frost  Henry J. Spratt
Abstract:
Hydrotalcites of formula Mg6(Al,Fe)2(OH)16(CO3)·4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio have been successfully synthesised. The XRD patterns show variation in the d‐spacing attributed to the size of the cation. Raman and infrared bands in the OH stretching region are assigned to (1) brucite layer OH stretching vibrations, (2) water stretching bands and (3) water strongly hydrogen bonded to the carbonate anion. Multiple (CO3)2− symmetric stretching bands suggest that different types of (CO3)2− exist in the hydrotalcite interlayer. Increasing the cation ratio (Mg/Al,Fe) resulted in an increase in the combined intensity of the two Raman bands at around 3600 cm−1, attributed to Mg OH stretching modes, and a shift of the overall band profile to higher wavenumbers. These observations are believed to be a result of the increase in magnesium in the structure. Raman spectroscopy shows a reduction in the symmetry of the carbonate, leading to the conclusion that the anions are bonded to the brucite‐like hydroxyl surface and to the water in the interlayer. Water bending modes are identified in the infrared spectra at positions greater than 1630 cm−1, indicating that water is strongly hydrogen bonded to both interlayer anions and the brucite‐like surface. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:hydrotalcite  pyroaurite  carbonate  Raman spectroscopy  vibrational spectroscopy  cation/anion substitution effects
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号