首页 | 本学科首页   官方微博 | 高级检索  
     


A New Method for Bounding Rates of Convergence of Empirical Spectral Distributions
Authors:S. Chatterjee  A. Bose
Affiliation:(1) Department of Statistics, Stanford University, CA 94305, USA;(2) I.S.I., Theoretical Statistics and Mathematics Unit, 203 B.T. Road, Kolkata, 700108, India
Abstract:
The probabilistic properties of eigenvalues of random matrices whose dimension increases indefinitely has received considerable attention. One important aspect is the existence and identification of the limiting spectral distribution (LSD) of the empirical distribution of the eigenvalues. When the LSD exists, it is useful to know the rate at which the convergence holds. The main method to establish such rates is the use of Stieltjes transform. In this article we introduce a new technique of bounding the rates of convergence to the LSD. We show how our results apply to specific cases such as the Wigner matrix and the Sample Covariance matrix.
Keywords:Large dimensional random matrix  eigenvalues  limiting spectral distribution  Mar  /content/k3n7654481h87321/xxlarge269.gif"   alt="  ccaron"   align="  BASELINE"   BORDER="  0"  >enko-Pastur law  semicircular law  Wigner matrix  sample variance covariance matrix  Toeplitz matrix  moment method  Stieltjes transform  random probability  normal approximation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号