首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide
Authors:Fei Han  Guang-Hui Zhang  Ping Gu
Institution:1. School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
Abstract:The copper ferrocyanide (CuFC) prepared in this study was characterized using X-ray diffraction and scanning election microscopy. The distribution of particle sizes of the CuFC suspension was determined. The adsorption kinetics data were evaluated for an intraparticle diffusion model, a pseudo-first order model and a pseudo-second order model at temperatures of 288, 298 and 308 K, respectively. It was found that the adsorption process of Cs+ on CuFC was best described by a pseudo-second order kinetic model, with a correlation coefficient (R 2) equal to 1.000, and the adsorption rate constant increased with increasing temperature. This result indicated that chemisorptions took place during the adsorption process. The adsorption equilibrium data fit well to the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The mean adsorption energy (E) between 11 and 13 kJ/mol at different temperatures indicated that ion exchange was the main mechanism during the adsorption process. Thermodynamic parameters were also evaluated during the adsorption. The values of the standard Gibbs free energy change (ΔG o) and standard enthalpy change (ΔH o) suggested that the adsorption was a spontaneous and endothermic process. The distribution coefficient (K d) was more than 2.94 × 106 mL/g when the pH of solution was between 2.6 and 10.9, and the initial Cs+ concentration was 100 μg/L. The existence of K+ and Na+ did not affect the adsorption of Cs+ on CuFC when the concentration of K+ and Na+ in the solution was below 20 and 1,000 mg/L, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号