Abstract: | ![]() The calculation of the effective elastic moduli of inhomogeneous solids, which connect the stresses and strains averaged for the material, is accompanied by certain mathematical difficulties owing to correlation relationships of arbitrary orders. Neglect of correlation relationships leads to average elastic moduli, where averaging according to Voigt and Reuss establishes boundaries containing the effective elastic moduli [1]. Approximate values of the latter can be found by taking into account the correlation relationships of the second order in both calculation schemes [2, 3]. Another method of evaluating the true moduli consists of narrowing the boundaries of Voigt and Reuss on the basis of model representations [4-6]. The approximate effective elastic moduli for a series of polycrystals with various common-angle values are presented in [7]. An analysis of the effect of the correlation relationships between the grains of a mechanical mixture of isotropic components on the effective elastic moduli is carried out in [8], although in all the papers just mentioned the use of correlative corrections to narrow the range of elastic moduli is not investigated. Below it is shown that the calculation of the correlation corrections in the second approximation allows the range for the effective moduli to be narrowed. |