首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grand canonical Monte Carlo simulation of ligand-protein binding
Authors:Clark Matthew  Guarnieri Frank  Shkurko Igor  Wiseman Jeff
Institution:Locus Pharmaceuticals Four Valley Square, Blue Bell, Pennsylvania 19422, USA. mclark@locuspharma.com
Abstract:A new application of the grand canonical thermodynamics ensemble to compute ligand-protein binding is described. The described method is sufficiently rapid that it is practical to compute ligand-protein binding free energies for a large number of poses over the entire protein surface, thus identifying multiple putative ligand binding sites. In addition, the method computes binding free energies for a large number of poses. The method is demonstrated by the simulation of two protein-ligand systems, thermolysin and T4 lysozyme, for which there is extensive thermodynamic and crystallographic data for the binding of small, rigid ligands. These low-molecular-weight ligands correspond to the molecular fragments used in computational fragment-based drug design. The simulations correctly identified the experimental binding poses and rank ordered the affinities of ligands in each of these systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号