首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transition strengths and first-order properties of excited states from local coupled cluster CC2 response theory with density fitting
Authors:Kats Danylo  Korona Tatiana  Schütz Martin
Institution:Institute of Physical and Theoretical Chemistry, University of Regensburg, Universit?tsstrasse 31, D-93040 Regensburg, Germany.
Abstract:A new ab initio method for calculating transition strengths and orbital-unrelaxed first-order properties of singlet ground and excited states of extended molecular systems is presented. It is based on coupled cluster response theory at the level of the CC2 model with local approximations introduced to the doubles-excitation part of the wave function. Density fitting is employed for the calculation of the electron repulsion integrals, so that--with the exception of doubles amplitudes--only three-indexed objects do occur in the formalism. The new method was tested by performing calculations for a set of various molecules and excited states and by comparing the results with corresponding canonical (nonlocal) calculations. It turned out that for calculating transition strengths and properties of excited states the ordinary Boughton-Pulay domains are insufficient in numerous cases. To circumvent this problem a new scheme for extending domains is proposed, which is based on the solution of the coupled perturbed localization and Hartree-Fock equations. When such extended domains are used, a satisfactory agreement between canonical and local results is achieved.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号