首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitric oxide adsorption and reduction reaction mechanism on the Rh7(+) cluster: a density functional theory study
Authors:Xie Hujun  Ren Meng  Lei Qunfang  Fang Wenjun
Institution:Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, China. hujunxie@gmail.com
Abstract:The transition metal rhodium has been proved the effective catalyst to convert from NO(x) to N(2.) In the present work, we are mainly focused on the NO adsorption and decomposition reaction mechanism on the surface of the Rh(7)(+) cluster, and the calculated results suggest that the reaction can proceed via three steps. First, the NO can adsorb on the surface of the Rh(7)(+) cluster; second, the NO decomposes to N and O atoms; finally, the N atom reacts with the second adsorbed NO and reduces to a N(2) molecule. The N-O bond breaks to yield N and O atoms in the second step, which is the rate-limiting step of the whole catalytic cycle. This step goes over a relatively high barrier (TS(12)) of 39.6 kcal/mol and is strongly driven by a large exothermicity of 55.1 kcal/mol during the formation of stable compound 3, accompanied by the N and O atoms dispersed on the different Rh atoms of the Rh(7)(+) cluster. In addition, the last step is very complex due to the different possibilities of reaction mechanism. On the basis of the calculations, in contrast to the reaction path II that generates N(2) from two nitrogen atoms coupling, the reaction path I for the formation of intermediate N(2)O is found to be energetically more favorable. Present work would provide some valuable fundamental insights into the behavior of the nitric oxide adsorption and reduction reaction mechanism on the Rh(7)(+) cluster.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号