首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat conduction in a cylinder crossed by an electric current with skin effect
Authors:Antonio Barletta  Enzo Zanchini
Institution:(1) Istituto di Fisica Tecnica — Facoltà di Ingegneria, Università di Bologna, Viale Risorgimento, 2, I-40136 Bologna, Italy
Abstract:The steady periodic temperature distribution in an infinitely long solid cylinder crossed by an alternating current is evaluated. First, the time dependent and non-uniform power generated per unit volume by Joule effect within the cylinder is determined. Then, the dimensionless temperature distribution is obtained by analytical methods in steady periodic regime. Dimensionless tables which yield the amplitude and the phase of temperature oscillations both on the axis and on the surface of copper or nichrome cylindrical electric resistors are presented.
Wärmeleitung in einem stromdurchflossenen Zylinder unter Berücksichtigung des Skin-Effektes
Zusammenfassung Es wird die periodische Temperaturverteilung für den eingeschwungenen Zustand in einem unendlich langen, von Wechselstrom durchflossenen Vollzylinder ermittelt. Zuerst erfolgt die Bestimmung der zeitabhängigen, nichgleichförmigen Energiefreisetzung pro Volumeneinheit des Zylinders infolge Joulescher Wärmeentwicklung und anschließend die Ermittlung der quasistationären Temperaturverteilung auf analytischem Wege. Amplitude und Phasenverzögerung der Temperaturschwingungen werden für die Achse und die Oberfläche eines Kupfer- oder Nickelchromzylinders tabellarisch in dimensionsloser Form mitgeteilt.

Nomenclature A integration constant introduced in Eq. (2) - ber, bei Thomson functions of order zero - Bi Biot numberhr 0/lambda - c speed of light in empty space - c 1,c 2 integration constants introduced in Eq. (46) - c p specific heat at constant pressure - E electric field - E z component ofE alongz - E time independent part ofE, defined in Eq. (1) - f function ofs andOHgr defined in Eq. (11) - g function ofs andOHgr defined in Eq. (37) - h convection heat transfer coefficient - H magnetic field - i imaginary uniti=(–1)1/2 - I electric current - I eff effective electric currentI eff=parIpar/21/2 - Im imaginary part of a complex number - J n Bessel function of first kind and ordern - J electric current density - q g power generated per unit volume - 
$$\bar q_g $$
time average of the power generated per unit volume - 
$$\dot Q$$
time averaged power per unit length - r radial coordinate - R electric resistance per unit length - r 0 radius of the cylinder - Re real part of a complex number - s dimensionless radial coordinates=r/r 0 - sprime, sPrime integration variables - t time - T temperature - 
$$\bar T$$
time averaged temperature - T f fluid temperature outside the boundary layer - 
$$\bar T_s $$
time average of the surface temperature of the cylinder - u, ugr functions ofs, Lambda and OHgr defined in Eqs. (47) and (48) - W Wronskian - x position vector - x real variable - Y n Bessel function of second kind and ordern - z unit vector parallel to the axis of the cylinder - z axial coordinate - par·par modulus of a complex number - equiv equal by definition Greek symbols agr amplitude of the dimensionless temperature oscillations - epsi electric permittivity - theta dimensionless temperature defined in Eq. (16) - theta 0,theta 1,theta 2 functions ofs defined in Eq. (22) - lambda thermal conductivity - Lambda dimensionless parameterLambda=(2Xgr)1/2 OHgr - mgr magnetic permeability - mgr 0 magnetic permeability of free space - xgr function of OHgr defined in Eq. (59) - Xgr dimensionless parameterXgr=rgrc p/(lambdamgrrgr) - rgr mass density - sgr electric conductivity - tau dimensionless timetau=ohgrt - phiv phase of the dimensionless temperature oscillations - psgr function ofs:psgr=theta 1+itheta 2 - ohgr angular frequency - OHgr dimensionless parameterOHgr=(ohgrmgrrgr)1/2 r 0
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号