首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive steered molecular dynamics: validation of the selection criterion and benchmarking energetics in vacuum
Authors:Ozer Gungor  Quirk Stephen  Hernandez Rigoberto
Affiliation:Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
Abstract:
The potential of mean force (PMF) for stretching decaalanine in vacuum was determined earlier by Park and Schulten [J. Chem. Phys. 120, 5946 (2004)] in a landmark article demonstrating the efficacy of combining steered molecular dynamics and Jarzynski's nonequilibrium relation. In this study, the recently developed adaptive steered molecular dynamics (ASMD) algorithm [G. Ozer, E. Valeev, S. Quirk, and R. Hernandez, J. Chem. Theory Comput. 6, 3026 (2010)] is used to reproduce the PMF of the unraveling of decaalanine in vacuum by averaging over fewer nonequilibrium trajectories. The efficiency and accuracy of the method are demonstrated through the agreement with the earlier work by Park and Schulten, a series of convergence checks compared to alternate SMD pulling strategies, and an analytical proof. The nonequilibrium trajectories obtained through ASMD have also been used to analyze the intrapeptide hydrogen bonds along the stretching coordinate. As the decaalanine helix is stretched, the initially stabilized i → i + 4 contacts (α-helix) is replaced by i → i + 3 contacts (3(10)-helix). No significant formation of i → i + 5 hydrogen bonds (π-helix) is observed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号