摘 要: | ![]() 采用激光诱导击穿光谱(LIBS)技术对配制的飞灰样品进行实验分析,应用支持向量机回归(SVR)模型对飞灰的含碳量进行预测。运用网格搜索法分别对径向基(RBF)核函数和多项式函数的结构参数进行寻优,然后分别建立基于内标元素特征光谱、全谱和主要元素特征光谱的SVR模型。研究表明,基于RBF和多项式核函数的SVR模型在理想的结构参数下可以取得相同的分析精度,但RBF能较快地完成模型优化并且不易出现欠拟合的现象。基于内标元素特征光谱的SVR模型的分析精度与内标法相当,基于全谱的SVR模型出现明显的过拟合现象。基于主要元素特征光谱的SVR模型的回归系数为0.986,校正均方根误差为1.79%,预测均方根误差为2.57%,说明该模型可以有效避免欠拟合和过拟合。
|