首页 | 本学科首页   官方微博 | 高级检索  
     


A Globally Convergent Polak-Ribière-Polyak Conjugate Gradient Method with Armijo-Type Line Search
Authors:Gaohang Yu  Lutai Guan  Zengxin Wei
Abstract:In this paper, we propose a globally convergent Polak-Ribière-Polyak (PRP)conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and less demanding than those defined in [4,10]. A favorite property of this method is that we can choose the initial stepsize as the one-dimensional minimizer of a quadratic model Φ(t):= f(xk)+tgTkdk+1/2t2dTkQkdk, where Qk is a positive definite matrix that carries some second order information of the objective function f. So, this line search may make the stepsize tk more easily accepted. Preliminary numerical results show that this method is efficient.
Keywords:Unconstrained optimization  conjugate gradient method  nonconvex minimization  global convergence
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号