首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elastic moduli of nanocrystalline binary Al alloys with Fe,Co, Ti,Mg and Pb alloying elements
Authors:Rita I Babicheva  Dmitry V Bachurin  Sergey V Dmitriev  Ying Zhang  Shaw Wei Kok  Lichun Bai
Institution:1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore;2. Institute for Metals Superplasticity Problems of Russian Academy of Sciences, Ufa, Russia;3. Institute for Metals Superplasticity Problems of Russian Academy of Sciences, Ufa, Russia;4. Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany;5. National Research Tomsk State University, Tomsk, Russia;6. Singapore Institute of Manufacturing Technology, Singapore, Singapore
Abstract:The paper studies the elastic moduli of nanocrystalline (NC) Al and NC binary Al–X alloys (X is Fe, Co, Ti, Mg or Pb) by using molecular dynamics simulations. X atoms in the alloys are either segregated to grain boundaries (GBs) or distributed randomly as in disordered solid solution. At 0 K, the rigidity of the alloys increases with decrease in atomic radii of the alloying elements. An addition of Fe, Co or Ti to the NC Al leads to increase in the Young’s E and shear μ moduli, while an alloying with Pb decreases them. The elastic moduli of the alloys depend on a distribution of the alloying elements. The alloys with the random distribution of Fe or Ti demonstrate larger E and μ than those for the corresponding alloys with GB segregations, while the rigidity of the Al–Co alloy is higher for the case of the GB segregations. The moduli E and μ for polycrystalline aggregates of Al and Al–X alloys with randomly distributed X atoms are estimated based on the elastic constants of corresponding single-crystals according to the Voigt-Reuss-Hill approximation, which neglects the contribution of GBs to the rigidity. The results show that GBs in NC materials noticeably reduce their rigidity. Furthermore, the temperature dependence of μ for the NC Al–X alloys is analyzed. Only the Al–Co alloy with GB segregations shows the decrease in μ to the lowest extent in the temperature range of 0–600 K in comparison with the NC pure Al.
Keywords:Molecular dynamics  nanomaterials  aluminium alloys  grain boundaries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号