首页 | 本学科首页   官方微博 | 高级检索  
     


First-principles characterisation of the pressure-dependent elastic anisotropy of SnO2 polymorphs
Authors:Pratik Kumar Das  Anjan Chowdhury  Nibir Mandal
Affiliation:1. Department of Physics, Jadavpur University, Kolkata, India;2. Faculty of Science, High Pressure and Temperature Laboratory, Jadavpur University, Kolkata, India
Abstract:
Using DFT calculations, this study investigates the pressure-dependent variations of elastic anisotropy in the following SnO2 phases: rutile-type (tetragonal; P42/mnm), CaCl2-type (orthorhombic; Pnnm)-, α-PbO2-type (orthorhombic; Pbcn)- and fluorite-type (cubic; Fm-3m). Experimentally, these polymorphs undergo sequential structural transitions from rutile-type → CaCl2-type → α-PbO2-type → fluorite-type with increasing pressure at 11.35, 14.69 and 58.22 GPa, respectively. We estimate the shear anisotropy (A1 and A3) on {1?0?0} and {0?0?1} crystallographic planes of the tetragonal phase and (A1, A2 and A3) on {1?0?0}, {0?1?0} and {0?0?1} crystallographic planes of the orthorhombic phases. The rutile-type phase shows strongest shear anisotropy on the {0?0?1} planes (A2 > 4.8), and the degree of anisotropy increases nonlinearly with pressure. In contrast, the anisotropy is almost absent on the {1?0?0} planes (ie A1 ~ 1) irrespective of the pressure. The CaCl2-type phase exhibits similar shear anisotropy behaviour preferentially on {0?0?1} (A3 > 5), while A1 and A2 remain close to 1. The α-PbO2-type phase shows strikingly different elastic anisotropy characterised by a reversal in anisotropy (A3 > 1 to < 1) with increasing pressure at a threshold value of 38 GPa. We provide electronic density of states and atomic configuration to account for this pressure-dependent reversal in shear anisotropy. Our study also analyses the directional Young’s moduli for the tetragonal and orthorhombic phases as a function of pressure. Finally, we estimate the band gaps of these four SnO2 phases as a function of pressure which are in agreement with the previous results.
Keywords:DFT calculations  structural transitions  elastic constants  shear anisotropy  band gaps
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号