首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low temperature growth and dimension- dependent photoluminescence efficiency of semiconductor nanowires
Authors:Y-J Hsu  S-Y Lu
Institution:(1) Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan, 30043
Abstract:Low temperature growth and dimension dependent photoluminescence (PL) efficiency of semiconductor nanowires were investigated with CdS as a model system. The CdS nanowires were prepared with a simple, low temperature metal-organic chemical vapor deposition (MOCVD) process via the vapor–liquid–solid (VLS) mechanism. The low growth temperature of 360 °C was made possible with a newly developed single-source precursor of CdS and by using sputtered Au as the catalyst for the VLS growth. The length and diameter of the nanowires were adjusted by reaction time and sputtering conditions of Au, respectively. Nanowires of up to several μm in length and 20 to 200 nm in diameter were obtained. The PL quantum yield of the nanowires was found to decrease with increasing wire length, but to increase with decreasing wire diameter. This dimension-dependent PL efficiency of one-dimensional nanostructure, unlikely resulting from the quantum size confinement effect, appears to be a new observation that carries application significance. PACS 74.25.Gz; 78.55.Et; 78.67.Lt
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号