首页 | 本学科首页   官方微博 | 高级检索  
     


Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode
Authors:Kasyutich  V.L.  Bale  C.S.E.  Canosa-Mas  C.E.  Pfrang  C.  Vaughan  S.  Wayne  R.P.
Affiliation:(1) Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK, UK
Abstract:We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at λ=404.278 nm. A noise-equivalent (1σ≡ root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5×10-8 was demonstrated with a mirror reflectivity of ∼0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8×1010 molecule cm-3 and towards the IO radical of 3.3×109 molecule cm-3 were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2+NO→RO+NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2+O→NO+O2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3×1010 molecule cm-3 in the discharge-flow-tube experiments. Received: 4 February 2003 / Revised version: 10 March 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +44-1865/275-410, E-mail: vlk@physchem.ox.ac.uk
Keywords:PACS: 42.55.Px   42.62.Fi   42.68.Ca   82.30.Cf
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号