首页 | 本学科首页   官方微博 | 高级检索  
     


Electrokinetic motion of a charged colloidal sphere in a spherical cavity with magnetic fields
Authors:Hsieh Tzu H  Keh Huan J
Affiliation:Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
Abstract:The magnetohydrodynamic (MHD) effects on the translation and rotation of a charged colloidal sphere situated at the center of a spherical cavity filled with an arbitrary electrolyte solution when a constant magnetic field is imposed are analyzed at the quasisteady state. The electric double layers adjacent to the solid surfaces may have an arbitrary thickness relative to the particle and cavity radii. Through the use of a perturbation method to the leading order, the Stokes equations modified with the electric∕Lorentz force term are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution in the fluid phase from solving the linearized Poisson-Boltzmann equation, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere produced by the MHD effects valid for all values of the particle-to-cavity size ratio. For the limiting case of an infinitely large cavity with an uncharged wall, our result reduces to the relevant solution for an unbounded spherical particle available in the literature. The boundary effect on the MHD motion of the spherical particle is a qualitatively and quantitatively sensible function of the parameters a∕b and κa, where a and b are the radii of the particle and cavity, respectively, and κ is the reciprocal of the Debye screening length. In general, the proximity of the cavity wall reduces the MHD migration but intensifies the MHD rotation of the particle.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号