首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Imaginary time Gaussian dynamics of the Ar3 cluster
Authors:Cartarius Holger  Pollak Eli
Institution:Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel. Holger.Cartarius@weizmann.ac.il
Abstract:Semiclassical Gaussian approximations to the Boltzmann operator have become an important tool for the investigation of thermodynamic properties of clusters of atoms at low temperatures. Usually, numerically expensive thawed Gaussian variants are applied. In this article, we introduce a numerically much cheaper frozen Gaussian approximation to the imaginary time propagator with a width matrix especially suited for the dynamics of clusters. The quality of the results is comparable to that of thawed Gaussian methods based on the single-particle ansatz. We apply the method to the argon trimer and investigate the dissociation process of the cluster. The results clearly show a classical-like transition from a bounded moiety to three free particles at a temperature T ≈ 20 K, whereas previous studies of the system were not able to resolve this transition. Quantum effects, i.e., differences with the purely classical case manifest themselves in the low-temperature behavior of the mean energy and specific heat as well as in a slight shift of the transition temperature. We also discuss the influence of an artificial confinement of the atoms usually introduced to converge numerical computations. The results show that restrictive confinements often implemented in studies of clusters can influence the thermodynamic properties drastically. This finding may have implications on other studies of atomic clusters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号