首页 | 本学科首页   官方微博 | 高级检索  
     检索      

四端双量子点系统中的自旋和电荷能斯特效应
引用本文:郑军,李春雷,杨曦,郭永.四端双量子点系统中的自旋和电荷能斯特效应[J].物理学报,2017,66(9):97302-097302.
作者姓名:郑军  李春雷  杨曦  郭永
作者单位:1. 渤海大学新能源学院, 锦州 121013; 2. 首都师范大学初等教育学院, 北京 100048; 3. 清华大学物理系, 北京 100084; 4. 量子物质科学协同创新中心, 北京 100084
基金项目:国家自然科学基金(批准号:11547209,11604021,11574173)、辽宁省博士科研启动基金指导计划(批准号:201601352)、低维量子物理国家重点实验室开放课题(批准号:KF201613)和北京市教育委员会科技计划一般项目(批准号:KM201410028021)资助的课题.
摘    要:基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.

关 键 词:量子点  能斯特效应  库仑相互作用
收稿时间:2016-12-20

Spin and charge Nernst effect in a four-terminal double quantum dot system
Zheng Jun,Li Chun-Lei,Yang Xi,Guo Yong.Spin and charge Nernst effect in a four-terminal double quantum dot system[J].Acta Physica Sinica,2017,66(9):97302-097302.
Authors:Zheng Jun  Li Chun-Lei  Yang Xi  Guo Yong
Institution:1. College of New Energy, Bohai University, Jinzhou 121013, China; 2. College of Elementary Education, Capital Normal University, Beijing 100048, China; 3. Department of Physics, Tsinghua University, Beijing 100084, China; 4. Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract:With the increase of integration scale, heat dissipation becomes one of the major problems in high density electronic devices and circuits. Controlling and reusing the heat energy in such miniaturized structures are essential topics for current and future technologies. With the development of microfabrication technology and low-temperature measurement technology in the last two decades, the thermoelectric measurement in low-dimensional sample has been feasible, and the thermal transport has received more and more attention. For the multi-terminal device, there is a novel thermoelectric phenomenon, called the spin Nernst effect, in which spin currents (or spin voltages) are generated perpendicularly to the temperature gradient. The spin Nernst effect has been confirmed experimentally, and has been theoretically studied in a variety of materials. In this paper, the spin and charge Nernst effect in a pair of vertically aligned quantum dots attached to four leads are studied in the Coulomb blockade regime based on the nonequilibrium Green's function technique. We focus on the influences of magnetic configuration and intra-dot (inter-dot) Coulomb interaction on the spin and charge Nernst effect. It is found that the signs and the magnitudes of spin and charge Nernst effect can be modulated by adjusting the magnetization directions of ferromagnetic electrodes. When the magnetic moments in the 1 and 3 electrodes are turned to antiparallel alignment, the pure spin Nernst (without charge Nernst) effect can occur by applying a transverse temperature gradient. Conversely, the spin and charge Nernst effect disappear if the magnetic moments of lead 1 and lead 3 are in the case of parallel configuration. Except for left and right thermal leads, we investigate the effect of the middle lead (lead 4) on the property of the Nernst effect. We find that when the normal metal lead 4 is transferred to ferromagnetic metal, the spin and charge Nernst effect both can be obtained simultaneously. In the end of the paper, we study the influences of intra-dot and inter-dot Coulomb interaction on the spin dependent Nernst coefficient. Through numerical calculations, we demonstrate that the magnitude of the Nernst effect is less dependent on the polarization strength of ferromagnetic electrodes, but can be remarkably enhanced by the Coulomb blockade. The spin Nernst coefficient is predicted to be more than two orders of magnitude larger than that of the case of zero Coulomb interaction. All the results indicate that the proposed four-terminal double quantum dot nano system is a promising candidate for spin caloritronic device.
Keywords:quantum dot  Nernst effect  Coulomb interaction
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号