首页 | 本学科首页   官方微博 | 高级检索  
     

γ射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响
引用本文:郝敏如,胡辉勇,廖晨光,王斌,赵小红,康海燕,苏汉,张鹤鸣. γ射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响[J]. 物理学报, 2017, 66(7): 76101-076101. DOI: 10.7498/aps.66.076101
作者姓名:郝敏如  胡辉勇  廖晨光  王斌  赵小红  康海燕  苏汉  张鹤鸣
作者单位:西安电子科技大学微电子学院, 宽禁带半导体材料与器件重点实验室, 西安 710071
基金项目:国家自然科学基金(批准号:61474085)和陕西省科技计划项目(批准号:2016GY-085)资助的课题.
摘    要:基于γ射线辐照条件下单轴应变Si纳米n型金属氧化物半导体场效应晶体管(NMOSFET)载流子的微观输运机制,揭示了单轴应变Si纳米NMOSFET器件电学特性随总剂量辐照的变化规律,同时基于量子机制建立了小尺寸单轴应变Si NMOSFET在γ射线辐照条件下的栅隧穿电流模型,应用Matlab对该模型进行了数值模拟仿真,探究了总剂量、器件几何结构参数、材料物理参数等对栅隧穿电流的影响.此外,通过实验进行对比,该模型仿真结果和总剂量辐照实验测试结果基本符合,从而验证了模型的可行性.本文所建模型为研究纳米级单轴应变Si NMOSFET应变集成器件可靠性及电路的应用提供了有价值的理论指导与实践基础.

关 键 词:单轴应变Si  纳米n型金属氧化物半导体场效应晶体管  总剂量  栅隧穿电流
收稿时间:2016-10-13

Influence of γ-ray total dose radiation effect on the tunneling gate current of the uniaxial strained Si nanometer n-channel metal-oxide-semiconductor field-effect transistor
Hao Min-Ru,Hu Hui-Yong,Liao Chen-Guang,Wang Bin,Zhao Xiao-Hong,Kang Hai-Yang,Su Han,Zhang He-Ming. Influence of γ-ray total dose radiation effect on the tunneling gate current of the uniaxial strained Si nanometer n-channel metal-oxide-semiconductor field-effect transistor[J]. Acta Physica Sinica, 2017, 66(7): 76101-076101. DOI: 10.7498/aps.66.076101
Authors:Hao Min-Ru  Hu Hui-Yong  Liao Chen-Guang  Wang Bin  Zhao Xiao-Hong  Kang Hai-Yang  Su Han  Zhang He-Ming
Affiliation:Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract:The carrier microscopic transport process of uniaxial strained Si n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) is analyzed under γ-ray radiation. The model of radiation-induced defect densities that are quantitative representations of trapped charges integrated across the thickness of the oxide (Not), and the number of interface traps at the semiconductor/oxide interface (Nit), is established. The variations of electrical characteristics of the uniaxial strained Si nanometer NMOSFET are also investigated under the total dose radiation. The device of uniaxial strained Si nanometer NMOSTET is irradiated by a 60Co γ-ray laboratory source at a constant dose rate of 0.5 Gy (Si)/s. The TID is deposited in several steps up to a maximum value of 2.5 kGy. Electrical measurements are performed at each TID step. All irradiated samples are measured using field test, and are required to finish measurement within 30 min, in order to reduce the annealing effect. Static drain-current ID vs. gate-voltage VGS electrical characteristics are measured with an HP4155B parametric analyzer. Some parameter extractions presented here come from these static measurements including the threshold voltage VTH, the trans-conductance gm, and the leakage current IOFF (ID at VGS=0 V and VDS=VDD). Irradiation bias:VG=+1 V, drain voltage VD is equal to source voltage VS (VD=VS=0). Measurement bias:VG=0-1 V, scanning voltage Vstep=0.05 V, VD=50 mV, and VS=0. The results indicate the drift of threshold voltage, the degradation of carrier mobility and the increase of leakage current because of the total dose radiation. Based on quantum mechanics, an analytical model of tunneling gate current of the uniaxial strained Si nanometer is developed due to the total dose irradiation effect. Based on this model, numerical simulation is carried out by Matlab. The influences of total dose, geometry and physics parameters on tunneling gate current are simulated. The simulation results show that when radiation dose and bias are constant, the tunneling gate current increases as the channel length decreases. When the structure parameters and the stress are fixed, the tunneling gate current increases with the increase of radiation dose. Whereas at a given the radiation dose, tunneling gate current will decrease due to the stress. When radiation dose and bias are kept unchanged, the tunneling gate current increases with the thickness of the gate oxide layer decresing. When the gate-source voltage, the thickness of oxide layer and stress are fixed, tunneling gate current is reduced with the increase of doping concentration in channel. When the structural parameters, the gate-source voltage and radiation dose are constant, the tunneling gate current decreases with increasing drain-source voltage. In addition, to evaluate the validity of the model, the simulation results are compared with experimental data, and good agreement is confirmed. Thus, the experimental results and proposed model provide good reference for research on irradiation reliability and application of strained integrated circuit of uniaxial strained Si nanometer n-channel metal-oxide-semiconductor field-effect transistor.
Keywords:uniaxial strained Si  nanometer NMOSFET  total dose  tunneling gate current
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号