首页 | 本学科首页   官方微博 | 高级检索  
     检索      

抽运-检测型非线性磁光旋转铷原子磁力仪的研究
引用本文:缪培贤,杨世宇,王剑祥,廉吉庆,涂建辉,杨炜,崔敬忠.抽运-检测型非线性磁光旋转铷原子磁力仪的研究[J].物理学报,2017,66(16):160701-160701.
作者姓名:缪培贤  杨世宇  王剑祥  廉吉庆  涂建辉  杨炜  崔敬忠
作者单位:兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000
摘    要:报道了一种抽运-检测型的非线性磁光旋转铷原子磁力仪.其原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致光的偏振方向会产生与磁场相关的转动.分析了该磁力仪的工作原理,并测试了它对不同磁场大小的响应.测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 p T/Hz~(1/2),磁场分辨率为0.1 p T.进一步研究了不同磁场下原子系综极化态的横向弛豫时间,讨论了原子磁力仪高磁场采样率的获得方法.本文的原子磁力仪在5000—100000 n T的磁场测量范围内磁场采样率可实现1—1000 Hz范围内可调,能够测量低频的微弱交变磁场.本文的研究内容为大磁场测量范围、高灵敏度、高磁场采样率的原子磁力仪研制提供了重要参考.

关 键 词:原子磁力仪  非线性磁光旋转  灵敏度  磁场采样率
收稿时间:2017-04-06

Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation
Miao Pei-Xian,Yang Shi-Yu,Wang Jian-Xiang,Lian Ji-Qing,Tu Jian-Hui,Yang Wei,Cui Jing-Zhong.Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation[J].Acta Physica Sinica,2017,66(16):160701-160701.
Authors:Miao Pei-Xian  Yang Shi-Yu  Wang Jian-Xiang  Lian Ji-Qing  Tu Jian-Hui  Yang Wei  Cui Jing-Zhong
Institution:Lanzhou Space Technology Institute of Physics, Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou 730000, China
Abstract:We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubidium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a π/2 pulse of oscillating magnetic field for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the magnetic field. The linearly polarized probing beam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula:B=(2π/γ) f, where γ and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. The atomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.
Keywords:atomic magnetometer  nonlinear magneto-optical rotation  sensitivity  magnetic field sampling rate
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号