首页 | 本学科首页   官方微博 | 高级检索  
     检索      

激光等离子体中高能电子各向异性压强的粒子模拟
引用本文:王宬朕,董全力,刘苹,吴奕莹,盛政明,张杰.激光等离子体中高能电子各向异性压强的粒子模拟[J].物理学报,2017,66(11):115203-115203.
作者姓名:王宬朕  董全力  刘苹  吴奕莹  盛政明  张杰
作者单位:1. 鲁东大学物理与光电工程学院, 烟台 264000;2. 上海交通大学物理与天文学院, 上海 200240;3. 上海交通大学IFSA协同创新中心, 上海 200240
基金项目:国家自然科学基金(批准号:11674146,11274152)资助的课题.
摘    要:直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束"点火"及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.

关 键 词:各向异性压强  粒子模拟  快点火
收稿时间:2017-03-03

Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction
Wang Cheng-Zhen,Dong Quan-Li,Liu Ping,Wu Yi-Ying,Sheng Zheng-Ming,Zhang Jie.Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction[J].Acta Physica Sinica,2017,66(11):115203-115203.
Authors:Wang Cheng-Zhen  Dong Quan-Li  Liu Ping  Wu Yi-Ying  Sheng Zheng-Ming  Zhang Jie
Institution:1. School of Physics and Optoelectronic Engineerings, Ludong University, Yantai 264000, China;2. Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;3. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Direct-drive inertial confinement fusion (ICF) requires a symmetric compression of the fuel target to achieve physical conditions for the ignition. The fast ignition scheme reduces the symmetry requirements for the target compression and the necessary driving energy, but symmetrically compressed target will certainly help improve the efficiency of the nuclear fuel burning. In this paper, with the particle-in-cell (PIC) simulation method, characteristics of the anisotropic pressure tensor of hot electrons are reported for the ultra intense laser pulse interaction with over dense plasmas, which mimics the scenario of the last stage when hot electrons are utilized to ignite the compressed fuel core in the ICF fast ignition scheme. A large number of hot electrons can stimulate pressure oscillations in the high density plasma. As the component parallel to the electron velocity dominates the pressure tensor, the electron density distribution perturbation propagates rapidly in this direction. In order to keep those hot electrons in the high density fuel plasma core for a period long enough for them to deposit energy and momentum, a magnetic field perpendicular to the electron velocity is used. The PIC simulation results indicate that the hot electrons can be trapped by the magnetic field, and the components of the anisotropic pressure tensor related to the parallel direction are significantly affected, thereby producing a high peak near the incidence surface. Since it is a relatively long process for the energy transfer from electrons to fuel ions and the nuclear interaction to be completed, the fluid effects take their roles in the fuel target evolution. The anisotropic electron pressure will deteriorate the fuel core symmetry, reduce the density, and achieve a lower efficiency of nuclear fuel burning and a lower gain of nuclear reaction than expected. The effects of the hot electron anisotropic pressure tensor in the fast ignition scheme should be considered as a factor in experiments where the nuclear reaction gain is measured to be much lower than the theoretical prediction.
Keywords:anisotropic electron pressure tensor  particle-in-cell simulation  fast ignition scheme
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号