首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应核学习相关向量机的乳腺X线图像微钙化点簇处理方法研究
引用本文:姚畅,陈后金,Yang Yong-Yi,李艳凤,韩振中,张胜君. 基于自适应核学习相关向量机的乳腺X线图像微钙化点簇处理方法研究[J]. 物理学报, 2013, 62(8): 88702-088702. DOI: 10.7498/aps.62.088702
作者姓名:姚畅  陈后金  Yang Yong-Yi  李艳凤  韩振中  张胜君
作者单位:1. 北京交通大学电子信息工程学院, 北京 100044;2. Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
摘    要:
采用自适应核学习相关向量机方法, 结合形态学滤波和Kallergi分簇标准, 研究了乳腺X线图像中微钙化点簇的处理. 首先将微钙化点检测看作一个监督学习问题, 然后应用自适应核学习相关向量机作为分类器判断图像中每一个位置是否为微钙化点并采用形态学处理滤除干扰噪声, 最后对获得的微钙化点采用Kallergi标准进行分簇. 为提高运算速度, 在微钙化点检测时将整个图像分解为多个子图像并行运算, 实现了一种基于自适应核学习相关向量机的微钙化点簇快速处理方法. 实验结果和分析表明, 自适应核学习相关向量机方法算法性能优于相关向量机方法, 特别是实现的快速方法能进一步降低微钙化点簇的处理时间.关键词:乳腺X线图像微钙化点簇相关向量机自适应核学习

关 键 词:乳腺X线图像  微钙化点簇  相关向量机  自适应核学习
收稿时间:2012-12-01

Microcalcification clusters processing in mammograms based on relevance vector machine with adaptive kernel learning
Yao Chang,Chen Hou-Jin,Yang Yong-Yi,Li Yan-Feng,Han Zhen-Zhong,Zhang Sheng-Jun. Microcalcification clusters processing in mammograms based on relevance vector machine with adaptive kernel learning[J]. Acta Physica Sinica, 2013, 62(8): 88702-088702. DOI: 10.7498/aps.62.088702
Authors:Yao Chang  Chen Hou-Jin  Yang Yong-Yi  Li Yan-Feng  Han Zhen-Zhong  Zhang Sheng-Jun
Abstract:
Using the method of adaptive kernel learning based relevance vector machine (ARVM) and combining the morphological filtering and the clustering criterion recommended by Kallergi, a new algorithm for microcalcification (MC) clusters processing in mammograms is investigated. Firstly, the detection of MC is formulated as a supervised-learning problem. Then the ARVM is used as a classifier to determine whether an MC object is present at each location in the mammogram and a morphological processing is used to remove the isolated spurious pixels. Finally, the identified MC clusters are obtained by Kallergi criterion. To improve the computational speed, a fast processing method based on ARVM is developed, in which the whole image is decomposed first into sub-image blocks for parallel operation. Experimental results indicate that the ARVM method outperforms the RVM method and, in particular, the fast processing method could greatly reduce the testing time.
Keywords:mammogrammicrocalcification clusterrelevance vector machineadaptive kernel learning
Keywords:mammogram  microcalcification cluster  relevance vector machine  adaptive kernel learning
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号