首页 | 本学科首页   官方微博 | 高级检索  
     检索      

质子辐射下互补金属氧化物半导体有源像素传感器暗信号退化机理研究
引用本文:汪波,李豫东,郭旗,刘昌举,文林,任迪远,曾骏哲,玛丽娅.质子辐射下互补金属氧化物半导体有源像素传感器暗信号退化机理研究[J].物理学报,2015,64(8):84209-084209.
作者姓名:汪波  李豫东  郭旗  刘昌举  文林  任迪远  曾骏哲  玛丽娅
作者单位:1. 中国科学院新疆理化技术研究所, 中国科学院特殊环境功能材料与器件重点实验室, 新疆电子信息材料与器件重点实验室, 乌鲁木齐 830011;2. 中国科学院大学, 北京 100049;3. 重庆光电技术研究所, 重庆 400060
基金项目:国家自然科学基金(批准号: 11005152)资助的课题.
摘    要:对某国产0.5 μm工艺制造的互补金属氧化物半导体有源像素传感器进行了10 MeV质子辐射试验, 当辐射注量达到预定注量点时, 采用离线的测试方法, 定量测试了器件暗信号的变化情况. 试验结果表明, 随着辐射注量的增加暗信号迅速增大. 采用MULASSIS (multi-layered shielding simulation software)软件计算了电离损伤剂量和位移损伤剂量, 在与γ辐射试验数据对比的基础上, 结合器件结构和工艺参数, 建立了分离质子辐射引起的电离效应和位移效应理论模型, 深入分析了器件暗信号的退化机理. 研究结果表明, 对该国产器件而言, 电离效应导致的表面暗信号和位移效应导致的体暗信号对整个器件暗信号退化的贡献大致相当.

关 键 词:互补金属氧化物半导体有源像素传感器  暗信号  质子辐射  位移效应
收稿时间:2014-07-30

Dark signal degradation in proton-irradiated complementary metal oxide semiconductor active pixel sensor
Wang Bo,Li Yu-Dong,Guo Qi,Liu Chang-Ju,Wen Lin,Ren Di-Yuan,Zeng Jun-Zhe,Ma Li-Ya.Dark signal degradation in proton-irradiated complementary metal oxide semiconductor active pixel sensor[J].Acta Physica Sinica,2015,64(8):84209-084209.
Authors:Wang Bo  Li Yu-Dong  Guo Qi  Liu Chang-Ju  Wen Lin  Ren Di-Yuan  Zeng Jun-Zhe  Ma Li-Ya
Institution:1. Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electric Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Chongqing Optoelectronics Research Institute, Chongqing 400060, China
Abstract:In this paper, we discuss the dark signal increase in complementary metal oxide semiconductor (CMOS) active pixel sensor due to proton-induced damage, and present the basic mechanism that may cause failure. When the fluence of protons reaches a predetermined point, the change of dark signal of the device is measured offline. The experimental result shows that as the fluence of protons increases, mean dark signal increases rapidly. The main reason for dark signal degradation is: 1) the ionizing damage causes a build-up of oxide trapped charge and interface state at the Si-SiO2 interface. The creation of the interface traps (with energy levels within the silicon bandgap), which can communicate with carriers in the silicon, gives rise to the thermal generation of the electron-hole pairs and, hence increasing the dark signals; 2) when protons pass through the sensor, there is a possibility of collisions with silicon lattice atoms in the bulk silicon. In these collisions, atoms can be displaced from their lattice sites and defects are formed. These resulting defects can give rise to states with energy levels within the forbidden bandgap. The increasing of dark signal is therefore one of the prominent consequences of bulk displacement. We use multi-layered shielding simulation software to calculate the ionization damage dose and displacement damage dose. Based on the comparison of the test data of gamma radiation, combined with the device structure and process parameters, a theoretical model for separation proton-induced ionization and displacement damage effects on CMOS active pixel is constructed, and the degradation mechanism of the mean dark signal is investigated. The result shows that the contribution of ionization effect induced surface dark signal and the contribution of displacement damage induced bulk dark signal to dark signal degradation of the whole device are roughly equal in this domestic CMOS active pixel.
Keywords:complementary metal oxide semiconductor active pixel sensor  dark signal  proton radiation  displacement effect
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号