Simultaneous similarity of matrices |
| |
Authors: | Shmuel Friedland |
| |
Affiliation: | 2. Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706, USA;3. Department of Mathematics, University of Wisconsin, Milwaukee, Wisconsin 53201 USA |
| |
Abstract: | In this paper we solve completely and explicitly the long-standing problem of classifying pairs of n × n complex matrices (A, B) under the simultaneous similarity (TAT−1, TBT−1). Roughly speaking, the classification decomposes to a finite number of steps. In each step we consider an open algebraic set 0n,2,r,π Mn × Mn (Mn = the set of n × n complex-valued matrices). Here r and π are two positive integers. Then we construct a finite number of rational functions ø1,…,øs in the entries of A and B whose values are constant on all pairs similar in n,2,r,π to (A, B). The values of the functions øi(A, B), I = 1,…, s, determine a finite number (at most κ(n, 2, r)) of similarity classes in n,2,r,π. Let Sn be the subspace of complex symmetric matrices in Mn. For (A, B) ε Sn × Sn we consider the similarity class (TATt, TBTt), where T ranges over all complex orthogonal matrices. Then the characteristic polynomial |λI − (A + xB)| determines a finite number of similarity classes for almost all pairs (A, B) ε Sn × Sn. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|