首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strong temperature and substrate effect on ZnO nanorod flower structures in modified chemical vapor condensation growth
Institution:1. Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India;2. Department of Physics, Presidency College, 86/1, College Street, Kolkata 700073, India
Abstract:We have reported low temperature growth (300 °C) of ZnO nanorod flower structures by depositing zinc acetate vapor on Ge (100) substrate in the form of a jet using chemical vapor condensation technique. The flowers were comprised of hierarchical arrangement of highly crystalline ZnO nanorods oriented isotropically around a common nucleus. The temperature window for stability of these structures was found to be very narrow and the formation of the flowers was highly depended on the type of the substrates used. The flower morphology changed to a different hemispherical shape when the growth temperature was increased by only 50 °C while decreasing the growth temperature of the same degrees resulted in an amorphous deposition of ZnO. The temperature and substrate effect has been explained on the basis of adatom kinetics during growth. X-ray diffraction and TEM study revealed wurtzite ZnO nanorods with lattice constants a and c of 3.2 and 5.19 Å, respectively. The flower structures showed strong room temperature photoluminescence having pure excitonic transition at around 3.298 eV.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号