首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic structure and optic absorption of phosphorene under strain
Institution:1. Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia;2. National University of Architecture and Construction of Armenia, Teryan 105, 0009 Yerevan, Armenia;3. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile;4. SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom;1. Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova;2. Institute of Applied Physics, Moldavian Academy of Science, Chisinau MD-2028, Republic of Moldova;3. Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea;1. School of Physical Electronics, Joint Laboratory for Police Equipment Research, University of Electronic Science and Technology of China, Chengdu 610054, PR China;2. School of Physics and Mech-tronic Engineering, Sichuan University of Arts and Science, Dazhou 635000, PR China;1. Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2;2. Department of Physics/Theoretical Physics, University of Oulu, Oulu FIN-90014, Finland;1. National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania;2. Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Ave, Little Rock 72204, USA;3. Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Ave, Little Rock 72204, USA
Abstract:We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.
Keywords:Phosphorene  Strain  Band structure  Optic absorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号