Single‐Electron Self‐Exchange between Cage Hydrocarbons and Their Radical Cations in the Gas Phase |
| |
Authors: | Andrés Guerrero Rebeca Herrero Esther Quintanilla Dr. Juan Z. Dávalos Dr. José‐Luis M. Abboud Prof. Dr. Pedro B. Coto Dr. Dieter Lenoir Prof. Dr. |
| |
Affiliation: | 1. Instituto de Química Física Rocasolano, CSIC, C/Serrano, 119, 28006 Madrid (Spain), Fax: (+34)?91‐5642431;2. Dow Benelux B.V., Polyurethane R&D, 443 Building, 4530 AA Terneuzen (The Netherlands);3. Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Institutos de Paterna, Apdo. 22085 46071, Valencia (Spain), Fax: (+34)?963543274;4. Institut für ?kologische Chemie, Helmholtz‐Zentrum Muenchen, Postfach 1129, 85758 Neuherberg (Germany), Fax: (+49)?89‐3187‐3371 |
| |
Abstract: | We show that the radical cations of adamantane (C10H16.+, 1 H.+) and perdeuteroadamantane (C10D16.+, 1 D.+) are stable species in the gas phase. The radical cation of adamantylideneadamantane (C20H28.+, 2 H.+) is also stable (as in solution). By using the natural 13C abundances of the ions, we determine the rate constants for the reversible isergonic single‐electron transfer (SET) processes involving the dyads 1 H.+/ 1 H, 1 D.+/ 1 D and 2 H.+/ 2 H. Rate constants for the reaction 1 H.++ 1 D? 1 H+ 1 D.+ are also determined and Marcus’ cross‐term equation is shown to hold in this case. The rate constants for the isergonic processes are extremely high, practically collision‐controlled. Ab initio computations of the electronic coupling (HDA) and the reorganization energy (λ) allow rationalization of the mechanism of the process and give insights into the possible role of intermediate complexes in the reaction mechanism. |
| |
Keywords: | ab initio calculations cage compounds electron transfer hydrocarbons radical ions |
|
|