首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Turbulence energy balance in reacting turbulent flows
Authors:V B Librovich  V I Lisitsyn
Institution:1. Moscow
Abstract:The turbulence accompanying combustion and the propagation of detonation waves in gases has been studied theoretically and experimentally in many papers 1–8]. The attention of researchers has been concentrated on essential questions like how the turbulent flow field interacts with the kinetics of the chemical reaction and to what extent the process of chemical change is intensified, and how the turbulence itself is deformed by the heat released and the accompanying expansion of the gases. The various mechanisms proposed for these phenomena are based on various hypotheses concerning the structure of the combusion zone and the determinative stage of the interaction of the turbulence with the chemical-reaction kinetics. The mechanism of turbulence generation by combustion proposed in a number of papers 3–6] is based on the observation in turbulent flow of a weakly curved flickering laminar flame. This gives rise to a nonuniform flow field of the gas, part of the energy of which goes over into the energy of turbulent fluctuations. Other authors 7, 8] considered the turbulence field to interact with the chemical-reaction kinetics via a volume mechanism and suggested a criterion of turbulence intensification based on certain physical considerations, e.g., the condition for the intensification of thermogaskinetic oscillations proposed by Rayleigh 9]. In the present paper the problem is analyzed by introducing Kolmogorov's general equation for the turbulence energy balance in reacting turbulent flows 10]. In accordance with, this equation the turbulence energy can vary due to energy exchange between the turbulent motion and the mean gas flow as a result of the work on turbulent mass transport in the acceleration field of the mean flow, and due to the effect of pressure fluctuations on the rate of thermal expansion from the chemical reaction. Each of these effects is considered and analyzed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号