首页 | 本学科首页   官方微博 | 高级检索  
     

基于药效团模型的DHODH抑制剂构效关系研究
引用本文:鲍红娟,唐亚林,徐筱杰,向俊锋,郑智慧,路新华. 基于药效团模型的DHODH抑制剂构效关系研究[J]. 高等学校化学学报, 2010, 31(5): 938-946
作者姓名:鲍红娟  唐亚林  徐筱杰  向俊锋  郑智慧  路新华
作者单位:中国科学院化学研究所,分子动态与稳态国家重点实验室,北京分子科学国家重点实验室,北京,100190;北京大学化学与分子工程学院,北京,100871;中国科学院化学研究所,分子动态与稳态国家重点实验室,北京分子科学国家重点实验室,北京,100190;北京大学化学与分子工程学院,北京,100871;华北制药集团新药研究开发有限责任公司,石家庄,050015
摘    要:利用药效团模型研究二氢乳清酸脱氢酶(Dihydroorotate dehydrogenase,DHODH)抑制剂的构效关系,为DHODH抑制剂的虚拟筛选提供新的方法.以31个具有DHODH抑制活性的化合物为训练集化合物,半数抑制浓度(IC50)范围为7~63000 nmol/L,利用Catalyst/HypoGen算法构建DHODH抑制剂药效团模型,通过对训练集化合物多个构象进行叠合,提取药效团特征及三维空间限制构建药效团模型.利用基于CatScramble的交叉验证方法及评价模型对已知活性化合物的活性预测能力,确定较优药效团模型.模型包含1个氢键受体、3个疏水中心,表征了受体配体相互作用时可能发生的氢键相互作用、疏水相互作用和π-π相互作用,4个药效特征在三维空间的排列概括了DHODH抑制剂产生活性的结构特点.所得较优模型对训练集化合物及测试集化合物的计算活性值与实验活性值的相关系数分别为0.8405和0.8788.利用药效团模型对来源于微生物的系列化合物进行虚拟筛选,筛选出59个预测活性较好的化合物,可作为进一步药物研发的候选化合物.

关 键 词:DHODH 抑制剂  构效关系  药效团模型  虚拟筛选
收稿时间:2009-07-20

Structure-activity Relationship Studies on Inhibitors of Dihydroorotate Dehydrogenase Based on Pharmacophore Model
BAO Hong-Juan,TANG Ya-Lin,XU Xiao-Jie,XIANG Jun-Feng,ZHENG Zhi-Hui,LU Xin-Hua. Structure-activity Relationship Studies on Inhibitors of Dihydroorotate Dehydrogenase Based on Pharmacophore Model[J]. Chemical Research In Chinese Universities, 2010, 31(5): 938-946
Authors:BAO Hong-Juan  TANG Ya-Lin  XU Xiao-Jie  XIANG Jun-Feng  ZHENG Zhi-Hui  LU Xin-Hua
Affiliation:

1. State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
3. North China Pharmaceutical Group, New Drug Research and Development Co. Ltd., Shijiazhuang 050015, China

Abstract:The pharmacophore model of dihydroorotate dehydrogenase inhibitors was established guide the investigation on virtual screening for new dihydroorotate dehydrogenase inhibitors. Based on the training set composed of 31 DHODH inhibitors, pharmacophore models were generated by HypoGen program of the Catalyst software. The IC50 of the inhibitors varied from 7 to 63000 nmol/L. The pharmacophore models were a set of 3D pharmacophore features, which were constructed by the generation of conformational models and alignments of conformations based on the training set. The best model was validated to be highly predictive by two methods, namely, test set prediction and CatScramble method. This model consisted of two hydrogen-bond acceptors, and two hydrophobic regions. These features in the three-dimensional arrangement in the pharmacophore model could be characterized as hydrogen bond interaction, hydrophobic interaction and π-π interaction between ligand and acceptor. These features play an important role in determining the activities of bioactive molecules. The model′s correlation coefficient between the estimated and true activities for compounds constituting the training set were 0.8405, and for compounds from microbial metabolites were 0.8788. Using the pharmacophore model of DHODH inhibitors, 59 compounds with good estimated activities were found from microbial metabolites. New DHODH inhibitors may be found from these candidate compounds.
Keywords:Dihydroorotate dehydrogenase inhibitor   Structure-activity relationship   Pharmacophore model   Virtual screening
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号