首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A finite element method for surface PDEs: matrix properties
Authors:Maxim A Olshanskii  Arnold Reusken
Institution:1. Department of Mechanics and Mathematics, Moscow State M.V. Lomonosov University, 119899, Moscow, Russia
2. Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, 52056, Aachen, Germany
Abstract:We consider a recently introduced new finite element approach for the discretization of elliptic partial differential equations on surfaces. The main idea of this method is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a coupling with a problem in an outer domain that contains the surface, for example, two-phase flow problems. It has been proved that the method has optimal order of convergence both in the H 1 and in the L 2-norm. In this paper, we address linear algebra aspects of this new finite element method. In particular the conditioning of the mass and stiffness matrix is investigated. For the two-dimensional case we present an analysis which proves that the (effective) spectral condition number of the diagonally scaled mass matrix and the diagonally scaled stiffness matrix behaves like h −3| ln h| and h −2| ln h|, respectively, where h is the mesh size of the outer triangulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号