首页 | 本学科首页   官方微博 | 高级检索  
     


Immobilization and Properties of Lipase from Candida rugosa on Electrospun Nanofibrous Membranes with Biomimetic Phospholipid Moities
Authors:HUANG Xiao-jun  YU An-guo  GE Dan  XU Zhi-kang
Affiliation:Institute of Polymer Science, Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Abstract:
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention,from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase.To improve the catalytic efficiency and activity of the immobilized enzyme,poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs)were,respectively,electrospun into nanofibrous membranes with a mean diameter of 90 nm,as a support for enzyme immobilization.Lipase from Candida rugosa Was immobilized on these nanofibrous membranes by adsorption.Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN)nanofibrous and sheet membranes,respectively.Efiective enzyme loading on the nanofibrous membranes was achieved up to22mg/g,which was over 10times that on the sheet membrane.The activity retention of immobilized lipase increased from 56.4%to 76.8%with an increase in phospholipid moiety from 0 to 9.6%(molar fraction)in the nanofibrous membrane.Kinetic parameter Km was also determined for free and immobilized lipase.The Km valae of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane.The optimum pH was 7.7 for free lipase.but shifted to 8.3-8.5 for immobilized lipases.The optimum temperature was determined to be 35℃ for the free enzyme.but 42-44℃ for the immobilized ones,respectively.In addition,the thermal stability,reusability,and storage stability of the immobilized lipase were obviously improved compared to the free one.
Keywords:Biomimetic polymer  Nanofibrous membrane  Electrospinning  Enzyme immobilization  Lipase
本文献已被 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号