首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detection of silent temporal gaps in sinusoidal markers
Authors:C Formby  T G Forrest
Institution:Department of Psychology, University of Florida, Gainesville 32611.
Abstract:Gap detection thresholds were measured by forced-choice procedure for conditions where the duration of a silent gap was varied adaptively between pairs of sinusoidal markers of the same or different frequency. Frequencies of the first sinusoid in a pair of markers ranged from F1 = 500 to 4000 Hz. Second-sinusoid marker frequencies F2 included F1 = F2, and usually frequencies 2%, 5%, 24%, and 50% higher than F1. In preliminary studies the role of presentation level (E/N0) on gap detection was considered. Preliminary data revealed confounding extraneous factors arising from gating transients and from overall stimulus (i.e., markers + gap) and/or masker duration cues. In the main experiments, the contributions of these extraneous cues were evaluated with experimental designs aimed at identifying and minimizing the confounding roles of these cues in gap detection. For conditions where extraneous gating transient cues were minimized (by presenting the sinusoidal markers in a continuous noise masker with random onset phase for the second sinusoid in every pair of markers) and overall stimulus duration cues were diminished (by randomizing the duration of each marker independently), gap detection thresholds increased from 5 to 90 ms as the frequency separation between F1 and F2 was increased by half an octave. When the gap detection thresholds were treated as filter attenuation values by normalizing and converting the data into decibels, the data were closely fit by the roex filter model. On average, the listeners' performances were modeled well by a constant-percentage (7%) bandwidth filter centered on F1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号