首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enumeration of three-dimensional convex polygons
Authors:Mireille Bousquet-Mélou  Anthony J Guttmann
Institution:(1) LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France;(2) Department of Mathematics, The University of Melbourne, Parkville, 3052 Victoria, Australia
Abstract:A self-avoiding polygon (SAP) on a graph is an elementary cycle. Counting SAPs on the hypercubic lattice ℤ d withd≥2, is a well-known unsolved problem, which is studied both for its combinatorial and probabilistic interest and its connections with statistical mechanics. Of course, polygons on ℤ d are defined up to a translation, and the relevant statistic is their perimeter. A SAP on ℤ d is said to beconvex if its perimeter is “minimal”, that is, is exactly twice the sum of the side lengths of the smallest hyper-rectangle containing it. In 1984, Delest and Viennot enumerated convex SAPs on the square lattice 6], but no result was available in a higher dimension. We present an elementar approach to enumerate convex SAPs in any dimension. We first obtain a new proof of Delest and Viennot's result, which explains combinatorially the form of the generating function. We then compute the generating function for convex SAPs on the cubic lattice. In a dimension larger than 3, the details of the calculations become very cumbersome. However, our method suggests that the generating function for convex SAPs on ℤ d is always a quotient ofdifferentiably finite power series.
Keywords:05A15
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号