首页 | 本学科首页   官方微博 | 高级检索  
     检索      

低温超薄高效Cu(In,Ga)Se2太阳电池的实现
引用本文:韩安军,孙云*,李志国,李博研,何静靖,张毅,刘玮.低温超薄高效Cu(In,Ga)Se2太阳电池的实现[J].物理学报,2013,62(4):48401-048401.
作者姓名:韩安军  孙云*  李志国  李博研  何静靖  张毅  刘玮
作者单位:南开大学光电子薄膜器件与技术研究所, 光电子薄膜器件与技术天津市重点实验室, 光电信息技术科学教育部重点实验室, 天津 300071
基金项目:国家高技术研究发展计划(批准号:2004AA513020)、国家自然科学基金(批准号:60906033,50902074,90922037,61076061)和天津市自然科学基金(批准号:11JCYBJC01200)资助的课题.
摘    要:衬底温度保持恒定, 在Se气氛下按照一定的元素配比顺序蒸发Ga, In, Cu制备厚度约为0.7 μrm的Cu(In0.7Ga0.3)Se2 (CIGS)薄膜. 利用X射线衍射仪分析薄膜的晶体结构及物相组成, 扫描电子显微镜表征薄膜形貌及结晶质量, 二次离子质谱仪测试薄膜内部元素分布, 拉曼散射谱 分析薄膜表面构成, 带积分球附件的分光光度计测量薄膜光学性能. 研究发现在Ga-In-Se预制层内, In主要通过晶界扩散引起Ga/(Ga+In)分布均匀化. 衬底温度高于450 ℃时, 薄膜呈现单一的Cu(In0.7Ga0.3)Se2相; 低于400℃, 薄膜存在严重的Ga的两相分离现象, 且高含Ga相主要存在于薄膜的上下表面; 低于300 ℃, 薄膜结晶质量进一步恶化. 薄膜表层的高含Ga相Cu(In0.5Ga0.5)Se2以小晶粒形式均匀分布于薄膜表面, 增加了薄膜的粗糙度, 在电池内形成陷光结构, 提高了超薄电池对光的吸收. 加上带隙值较小的低含Ga相的存在, 使电池短路电流密度得到较大改善. 衬底温度在550 ℃–350 ℃变化时, 短路电流密度JSC是影响超薄电池转换效率的主要因素; 而衬底温度Tsub低于300 ℃时, 开路电压VOC和填充因子FF降低已成为电池性能减退的主要原因. Tsub为350 ℃时制备的0.7 μm左右的超薄CIGS电池转换效率达到了10.3%. 关键词: 2薄膜')" href="#">Cu(In,Ga)Se2薄膜 衬底温度 超薄 太阳电池

关 键 词:Cu(In  Ga)Se2薄膜  衬底温度  超薄  太阳电池
收稿时间:2012-07-27

The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature
Han An-Jun,Sun Yun,Li Zhi-Guo,Li Bo-Yan,He Jing-Jing,Zhang Yi,Liu Wei.The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature[J].Acta Physica Sinica,2013,62(4):48401-048401.
Authors:Han An-Jun  Sun Yun  Li Zhi-Guo  Li Bo-Yan  He Jing-Jing  Zhang Yi  Liu Wei
Institution:Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Institute of Photo-Electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071 China
Abstract:In the presence of Se, Cu(In0.7Ga0.3)Se2 (CIGS) thin films are prepared by the sequential evaporation of Ga, In, Cu at a constant substrate temperature between 250 ℃ and 550 ℃ on the Mo/soda lime glass substrates. The thickness values of films are about 0.7 μm. The structural and phase properties of CIGS films are studied by an X-ray diffractometer, the morphology and crystalline quality are characterized by a scanning electron microscope, the depth profiles of elements are measured by a secondary ion mass spectroscopy, the surface compositions are analyzed by a Raman spectrometer, and the optical properties of CIGS films are measured by a spectrophotometer with an integrating sphere. It is found that the films prepared at substrate temperature above 450 ℃ each exhibite a single Cu(In0.7Ga0.3)Se2 phase, and the homogenization of Ga/(Ga+In) distribution in the Ga-In-Se precursor is achieved by the diffusion of In atoms through grain boundaries. As the substrate temperature is less than 400 ℃, a serious Ga phase separation is observed and the high content of Ga phase mainly exists at the top and bottom of CIGS films. Below 300 ℃, a serious deterioration of crystalline quality is found, and Ga atoms cannot effectively enter into the CIS lattice position to form CIGS. The films prepared at the substrate temperature less than 400 ℃ are covered with lots of Cu(In0.5Ga0.5)Se2 small grains, which results in the enhancement of the surface roughness and the formation of a light trapping structure at the interface of Cd/CIGS. Thus, the light absorption of solar cell is improved. In addition, the smaller gap value of the low Ga content phase also facilitats the light absorption, then the short-circuit current density of thinned solar cell is greatly improved. The analysis shows that the short-circuit current density is the main factor affecting the conversion efficiency of thinned solar cell prepared between 550 ℃-350 ℃. However, when the substrate temperature is below 350 ℃, the reduction of VOC and FF has become the main reason for the deterioration of solar cell. In conclusion, the efficiency of solar cell with 0.7 μm CIGS absorber prepared at substrate temperature of 350 ℃ reaches 10.3% due to the improvement of short-circuit current density.
Keywords:Cu(In  Ga)Se2 film  substrate temperature  thinned  solar cell
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号