首页 | 本学科首页   官方微博 | 高级检索  
     


Delete-group Jackknife Estimate inPartially Linear Regression Models with Heteroscedasticity
Authors:Jin-hong?You  mailto:jinhongyou@hotmail.com"   title="  jinhongyou@hotmail.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Gemai?Chen
Affiliation:(1) Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599-7420, U.S.A.;(2) Department of Mathematics & Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
Abstract:
Abstract Consider a partially linear regression model with anunknown vector parameter beta,an unknown function g(·), andunknown heteroscedastic error variances. Chen,You[23] proposed a semiparametricgeneralized least squares estimator (SGLSE) forbeta, which takes theheteroscedasticity into account to increase efficiency. Forinference based on this SGLSE, it is necessary to construct aconsistent estimator for its asymptotic covariance matrix.However, when there exists within-group correlation, thetraditional delta method and the delete-1 jackknife estimationfail to offer such a consistent estimator. In this paper, bydeleting grouped partial residuals a delete-group jackknifemethod is examined. It is shown that the delete-group jackknifemethod indeed can provide a consistent estimator for theasymptotic covariance matrix in the presence of within-groupcorrelations. This result is an extension of that in[21].
Keywords:Partially linear regression model   asymptotic variance   heteroscedasticity   delete-group jackknife   semiparametric generalized least squares estimator  
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号