首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Properties of Hg implanted Hg1? x Cd x Te infrared detectors
Authors:G Fiorito  G Gasparrini and F Svelto
Institution:(1) CISE SpA-Segrate, Milan, Italy
Abstract:Experimental performance parameters of Hg implanted Hg1−x Cd x Te photovoltaic detectors are analyzed. At 77K, for 8–14 μm band, a comparison is made between performances and theoretical ultimate diffusion limits in low frequency direct detection. Experimental features are well-explained by a model based on the Auger band-to-band process for carrier recombination. Peak detectivities exceeding 1011 cm Hz1/2W−1, external quantum efficiencies as high as 90%, and zero-bias resistance-area products better than 1 Ω·cm2 have been achieved in devices with 12 μm cutoff wavelengths. In the 3–5 μm band performances are far from the diffusion limit. Notwithstanding, at 77K zero-bias resistance-area products are better than 104Ω·cm2 and detectivities of the order of 1012 cm Hz1/2W−1 were observed at 5 μm. Predominant generation-recombination contribution are present at room temperature in 1–1.3 μm photodiodes whose detectivities, primarily limited by the Johnson noise, at 1.3 μm are higher than 1011 cm Hz1/2W−1 at 300 K. The high frequency response of the photodiodes is also discussed. Response times as low as 0.5 ns are reached despite some limitations arising from the implanted layer sheet resistance. Work supported by CNR-CISE contract No. 73.01435.
Keywords:85  60
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号